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The three-state antiferromagnetic Potts model on the simple-cubic lattice is investigated using the cluster
variation method in the cube and the star-cube approximations. The broken-sublattice-symmetry phase is found
to be stable in the whole low-temperature region, contrary to previous results obtained using a modified cluster
variation method. The tiny free-energy difference between the broken-sublattice-symmetry and the
permutationally-symmetric sublattice phases is calculated in the two approximations and turns out to be
smaller in the(more accuratestar-cube approximation than in the cube di81063-651X96)50212-¢

PACS numbds): 05.50+q, 64.60.Cn

The three-state antiferromagnetic Potts model on theletely ordered phasgl0]. Other studies, however, indica-
simple-cubic lattice has been intensively studied in the lasted the existence of a long-range ordered phase called
two decades, because of its unusual and rather obscure lowroken-sublattice-symmetryBSS phase[2—-4,9. In this
temperature and critical propertigl—16]. The model phase the simple-cubic lattice is split into two interpenetrat-

Hamiltonian is very simple and can be written as ing sublattices, sayA and B, such that a site irA has all
its nearest neighbors belonging ® and vice versa. In
H=JD, &(s; S)), (1) terms of the site expectationy ,=(3(si K))ic a,
(ip) with k=1,2,3 anda=A,B, the BSS phase can be roughly

whereJ>0 is the interaction strength, the summation is overiescribed, at very low temperatures, py,=1, p1p=0

all nearest-neighbdiNN) pairs, § denotes Kronecker's delta, ?”d Pka=0, pk,le_IZ f_or k=23 (it can be easily veri-
: . fied that the phase is sixfold degenejafeo be more pre-
and the variables; can take on three different values, say

(12,3 cise, even at very low temperature, there is a small prob-

It is now commonly accepted that the model exhibits aability to find s;=2 or 3 in sublatticeA, too, because this

continuous phase transition at temperaffiye: 1.23(in units ~ C2US€s no increase in energy when the neighboring sites are
of J/kg, with kg Boltzmann’s constait belonging to the all in the state 3 or 2, respectively. This implies that
universality class of the three-dimensiond¥ model, as the long-range order does not saturate even at zero tempera-
suggested by the value of the critical exponents recently cafure, and that the zero temperature entropy per site is slightly
culated by means of extensive Monte Carlo simulatia®  'arger than the valugin2=0.346 574 one would predict
and the coherent-anomaly methpt¥]. The nature of the naively.
ordered phase, however, is not yet as clear as the critical Furthermore, in a recent investigation of the Blume-
behavior. Emery-Griffiths model by Rosengren and Lapinskag],

In the past some authors suggested that the orderdashsed on a modified cluster variation method, a new phase
phase should be one with algebraically decaying correlationgas found in an intermediate temperature region
like a Kosterlitz-Thouless phasgl,5,7,8, or an incom- (0.78<T<T.) between the BSS and the disordered phase.
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This phase, of degeneracy twelve, is characterized by the
relation p; o= P2 g>Psa=P3s>>P2a=P1s between the site  f[ps]=3Tr(p2H2) +KeT| Tr(pgInps) —3Tr(p4lnps)
expectations, and has been called the permutationally-

symmetric-sublatticePSS phase by the authors. The result 1 1

is qualitatively similar to that obtained in the Bethe approxi- +3Tr(p2Inpz) = 5Tr(paalNp1a) = 5TT(p18INP18) |,
mation(which, of course, predicts higher transition tempera-

ture9, and has received a partial confirmation by a Monte )

Carlo investigation by the same authors and Kundrpiés

On the other hand, a different Monte Carlo investigation by, ; ;
. ) . wherepsg, p4, p», andpy, denote the density matrices for the

Kolesik and Suzukj15] suggests that an intermediate phasec o g?qup;reeznearegtl-neighbor pair, andxzsin'm a sublat-

might exist bu.t cannot be the PSS phasg predicted by Roseﬂée indexa=A,B) clusters, respectivelyf. can be regarded

gren and Lapinskas. Kolesik and Suzuki have computed tth a functional opg only, since the compatibility constraints

free energies of the BSS and PSS phases, finding indicatio : - : :
that the BSS free energy is lower in the low temperatur%%n be easily solved hyefiningthe other density matrices as

region, up to a temperature which is highelightly below epart|al traces ofpg. In principle, pg has $=6561 different

1.0 than the transition temperature propased by Rosengredlagonal elements, but symmetry considerations reduce this

and Lapinskas. For even higher temperatures, the free ener'q}l/meer to 495, whictapart from the normalization con-
difference between the BSS and PSS phases is indistinguis raint, which can be easily dealt witks the final number of

dependent variables for this approximation. Despite this
able from zero, although the authors conclude that they Car]érge number of variables, the local minima corresponding to

not definitely rule out the possibility that it vanishes only atthe various phases are easily obtained by means of the so-

theInC rtlrtllgalrzts):anr::[ ork we examine carefully the issue of thecalled natural iteration methd@iM) [20]
P Work we exami g ISSu The star-cube approximatid21] goes a step further, in-

typg of ordered phasg) by.m‘?ans of two high order approxi- cluding in the set of maximal clusters also the ‘“stars”
mations of the cluster variation me_th(ﬁVM) [17-19. Th? formed by a site and its six nearest neighbors. This choice
CVM is a simple and powerful vaniational method for Ising- seems particularly useful here, since in view of the above

ltzléiaTogr?lc?' Itejisfesdta(t)irs]tiialc%n;zﬁ;'S;p'?k?gl?&n%f tr(;(ra]e\;‘_"lr'afemarks on the very low temperature properties of the BSS
all uﬁaffor%able variational rincil le‘ is based go th phase it should be particularly important to consider explic-
y P P n the itly the local environment of a site. The resulting approxi-

minimization of the functional mate functional has the form

Flpal=Tr(paH+KgTpxlnpy), 2

flpg,p7a,p78]1=3Tr(pH,) +KgT| Tr(pglnpg)
where A is the lattice,p, the corresponding trial density
matrix, and Tr stands for trace. In the CVM one chooses a set 1 1
of maximal clusters to take into account and considers the + 5T (p7alNp7a) + 5Tr(p76iNp78)
approximate variational functional

—3Tr(palnps) =4Tr(par plNpara)

Fl{pa,ae M= 2 Tr(pH,tkeTaupalnp,), (3 ~4TrpargiNpare) + 6Tr(p3alNp3a)

+6Tr(psglnpss) —3Tr(p2Inpy) |,
where M is the set of the maximal clusters and all their
subclustersp , the reduced trial density matrix for the cluster
a, 'H, the Hamiltonian contribution associated to the clusteiwhere p,,, p4s, andps, are the reduced density matrices
a (in the present cas#,=0 if « is not a nearest-neighbor (all with a sublattice indexx referring to the central sijdor
pair), and thea,’s are constant, geometry-dependent coeffi-the star cluster and its four- and three-site subclusters ob-
cients that can be easily obtained by solving a suitable set diined by taking the central site and three or two of its near-
linear equation$18,19. The approximate functiond¥ has est neighbors forming a solid angle or a plane angle, respec-
to be minimized with respect to the cluster density matricedively. The functional now depends opg, p7a and psg
(which, for a classical model, are diagonalith the con-  (subcluster matrices being defined as partial traces, as
straints(normalization and compatibility, respectively above, but the diagonal elements of these matrices are not
all independent because of the compatibility constraints.
Taking into account the lattice symmetries one finds 495
variables for the cube matrix, 168 variables for each star
matrix, and two sets of 30 linear constraints.

In this work we shall use two different approximations in It is important to notice here that the calculation which
the CVM scheme, the cube and the star-cube ones. The culsaggested the stability of the PSS ph@s#&,12 was based
approximatior{17] is obtained by selecting as maximal clus- on a modification of the cluster variation method which, al-
ters the cubic cells of the lattice, and the corresponding functhough considering many-point clustérg to the cube clus-
tional (free energy per sijds ter, like our cube approximationdoes not take into account

Trp,=1, aeM and Trgp,=pg, BCaeM. (4
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properly then-point correlations witm>2. In the modified Bp—r——T T T T
CVM, in fact, the density matrices are written as ]

p.=exp(—Ha(eff)), whereH " is an effective Hamiltonian 20f, .
which contains only one-site and two-site terms. This results s \ ]
in a reduced number of variational parameters and in viola- = ]

tion of the compatibility constraints in Ed4) (for a full v 10 i
description of the method, see RE22]; the authors of Refs. S I

[11,12 do not report details of the method used, leaving 5 i
them to Ref[23], which in turn refers td22]). The results

for the ordered phases are then qualitatively similar to those ol .

obtained using the much simpler two-poiethe approxi-
mation. The present work can then be regarded as an im-
provement of that described iti1] for two reasons: first, the
CVM is used in its full form, i.e., without the restriction  FIG. 1. Free energy difference between the PSS and the BSS
inherent to the modified version used[ibl]; second, with  phases, as given by the cukgashed ling and the star-cube ap-
the star-cube approximation we go one step further in th&roximation(solid line)
cumulant expansion of the variational principle.

Let us now turn to a brief description of our results. As far
as very low temperatures are concerned, results from th

cube approximation are in perfect agreement with the modibecomes negligibly small at a temperature slightly below
fied CVM at the cube levefl1,12. In particular we have 1.0, like in the Monte Carlo simulations by Kolesik and

P14=0.939 067,p;4=P3a=0.030 467 anch,5=0.000 117, Suzuki[15]. Furthermore, the numerical values &f are of

Pog=P3=0.499 942, while the entropy per site is ' i
s=0.366 928. The star-cube approximation introduces onliﬂgr:ame order of magnitude as those reported by these au
\;eéyoggnzgoco;;%ctloni,o%gg\ggg:0.939 04:16%33 S%AZ Although it is difficult to judge on the basis of our results

' Pig="0 » P2g=P3p=b. ' which is the exact ordered phase, some conclusions can cer-

W'tglgg iEgO%ti?:irl Stlct:n(:ezr:tfrge Sg:e}s not change mucﬁtainly be drawn. First of all, the results found by Rosengren
with respect to the modified CVM. In the cube approxima-and Lapinskas with the modified CVM.1] are ruled out and

. L L . attributed to the neglect of high-order correlatidnsmem-

trlr?c:] d\il;ligg%?/lrl\];lrcr; slljlztg&awgillfrfgr:asnjcu(as?fft’:{oe hs'grrfé tgiar:] tgcne 0f)er that a simple Bethe approximation yields the same quali-
order of magnitude of Ehe one found in the simple Isir?g cas ative resulty This means also tha}t .the phase d.iagram they
[22]. In the star-cube approximation the critical temperatur roposed for the Blume-Emery-Griffiths moddP] is incor-

ST rect and must be reconsidered. On the other hand, the present
IS sllghtly lower, To=1.263. These results are to be com- CVM predictions are compatible with the Monte Carlo re-
pared with the most recent Monte Carlo estimaiie-1.23 sults by Kolesik and SuzuKil5]. The Monte Carlo simula-

[13]. tions tends to favor the possibility that the free energy dif-

These estimates can be furthe_r |.mproved by ?mplomeerenceéf vanishes below the critical point, giving rise to a
the recently introduced cluster-variation—Paghroximants new intermediate phase. The CVM results seems to support

method(CVPAM) [24,29, from which one can try to extract this possibility, the free energy differené& being strongly

also estimates for the critical exponents. Using the star-cub : : ) _
results for the susceptibility for values wf=tanh(1T) up to Sepressed, while going from the cube to the star-cube ap

) . ; , proximation, in the same temperature region. In order to

Winax™ 0.48 we h"?we obtainedwith simple Dlog Padefqp— make this explicit, we have plotted in Fig. 2 the ratio be-
proximant3 a critical temperaturél=1.24 and a critical tween the two values off reported in Fig. 1. It can be seen
exponenty ranging from 1.30 to 1.33, in agreement with the
best recent estimates yielding=1.31[13]. These CVPAM
results are still affected by relatively large systematic errors,
and an accurate CVPAM analysis would require both using
larger maximal clusters and including corrections to scaling
[25]. This is beyond the scope of the present paper, but our
calculation ofy can at least be regarded as a check of the
accuracy of the CVM results.

The central result of our paper, qualitatively different
from the modified CVM, is, however, that the free
energy of the BSS phase is always lowalthough slightly

becomes even smaller in the more accurate star-cube ap-
groximation. In both approximations’f vanishes only
at the critical point, but in the star-cube approximation it

10

Sfcube/ sttar-cube
N

than that of the PSS phase. In Fig. 1 we have plotted the free ob—t—

energy differencesf vs temperature as given by the two 07 08 09 10 L1 12
approximations. It is important to notice that the numerical T

errors involved in the estimation of the free energy are sev-

eral order of magnitudes smaller thaf. From Fig. 1 one FIG. 2. Ratio of the free energy differences given by the cube

can see thabf is very small in the cube approximation, and and the star-cube approximations
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that this ratio increases very quickly for temperatures beecluster variation method, however, leave open also the pos-
tween 0.9 and 1.0, and this could be a signal that upon goingibility that the free energy difference vanishes only at the
to larger and larger maximal clusters the free energy differcritical point, and further investigations are therefore wel-
ence tends to zero. Both the Monte Carlo simulations and theome.
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