
Low-temperature phase of the three-state antiferromagnetic Potts model
on the simple-cubic lattice

Alessandro Pelizzola
Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, corso Duca degli Abruzzi 24, I-10129 Torino, Italy

~Received 3 May 1996!

The three-state antiferromagnetic Potts model on the simple-cubic lattice is investigated using the cluster
variation method in the cube and the star-cube approximations. The broken-sublattice-symmetry phase is found
to be stable in the whole low-temperature region, contrary to previous results obtained using a modified cluster
variation method. The tiny free-energy difference between the broken-sublattice-symmetry and the
permutationally-symmetric sublattice phases is calculated in the two approximations and turns out to be
smaller in the~more accurate! star-cube approximation than in the cube one.@S1063-651X~96!50212-6#

PACS number~s!: 05.50.1q, 64.60.Cn

The three-state antiferromagnetic Potts model on the
simple-cubic lattice has been intensively studied in the last
two decades, because of its unusual and rather obscure low-
temperature and critical properties@1–16#. The model
Hamiltonian is very simple and can be written as

H5J(̂
i j &

d~si ,sj !, ~1!

whereJ.0 is the interaction strength, the summation is over
all nearest-neighbor~NN! pairs,d denotes Kronecker’s delta,
and the variablessi can take on three different values, say
$1,2,3%.

It is now commonly accepted that the model exhibits a
continuous phase transition at temperatureTc51.23~in units
of J/kB , with kB Boltzmann’s constant!, belonging to the
universality class of the three-dimensionalXY model, as
suggested by the value of the critical exponents recently cal-
culated by means of extensive Monte Carlo simulations@13#
and the coherent-anomaly method@14#. The nature of the
ordered phase, however, is not yet as clear as the critical
behavior.

In the past some authors suggested that the ordered
phase should be one with algebraically decaying correlations
like a Kosterlitz-Thouless phase@1,5,7,8#, or an incom-

pletely ordered phase@10#. Other studies, however, indica-
ted the existence of a long-range ordered phase called
broken-sublattice-symmetry~BSS! phase @2–4,9#. In this
phase the simple-cubic lattice is split into two interpenetrat-
ing sublattices, sayA andB, such that a site inA has all
its nearest neighbors belonging toB and vice versa. In
terms of the site expectationspk,a5^d(si ,k)&,iPa,
with k51,2,3 anda5A,B, the BSS phase can be roughly
described, at very low temperatures, byp1,A51, p1,B50
and pk,A50, pk,B51/2 for k52,3 ~it can be easily veri-
fied that the phase is sixfold degenerate!. To be more pre-
cise, even at very low temperature, there is a small prob-
ability to find si52 or 3 in sublatticeA, too, because this
causes no increase in energy when the neighboring sites are
all in the state 3 or 2, respectively. This implies that
the long-range order does not saturate even at zero tempera-
ture, and that the zero temperature entropy per site is slightly
larger than the value12ln2.0.346 574 one would predict
naively.

Furthermore, in a recent investigation of the Blume-
Emery-Griffiths model by Rosengren and Lapinskas@11#,
based on a modified cluster variation method, a new phase
was found in an intermediate temperature region
(0.78,T,Tc) between the BSS and the disordered phase.
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This phase, of degeneracy twelve, is characterized by the
relationp1,A5p2,B.p3,A5p3,B.p2,A5p1,B between the site
expectations, and has been called the permutationally-
symmetric-sublattices~PSS! phase by the authors. The result
is qualitatively similar to that obtained in the Bethe approxi-
mation~which, of course, predicts higher transition tempera-
tures!, and has received a partial confirmation by a Monte
Carlo investigation by the same authors and Kundrotas@16#.
On the other hand, a different Monte Carlo investigation by
Kolesik and Suzuki@15# suggests that an intermediate phase
might exist but cannot be the PSS phase predicted by Rosen-
gren and Lapinskas. Kolesik and Suzuki have computed the
free energies of the BSS and PSS phases, finding indications
that the BSS free energy is lower in the low temperature
region, up to a temperature which is higher~slightly below
1.0! than the transition temperature proposed by Rosengren
and Lapinskas. For even higher temperatures, the free energy
difference between the BSS and PSS phases is indistinguish-
able from zero, although the authors conclude that they can-
not definitely rule out the possibility that it vanishes only at
the critical point.

In the present work we examine carefully the issue of the
type of ordered phase~s! by means of two high order approxi-
mations of the cluster variation method~CVM! @17–19#. The
CVM is a simple and powerful variational method for Ising-
like models, based on a cumulant expansion of the varia-
tional principle of statistical mechanics. The full~and gener-
ally unaffordable! variational principle is based on the
minimization of the functional

F @rL#5Tr~rLH1kBTrLlnrL!, ~2!

whereL is the lattice,rL the corresponding trial density
matrix, and Tr stands for trace. In the CVM one chooses a set
of maximal clusters to take into account and considers the
approximate variational functional

F@$ra ,aPM %#5 (
aPM

Tr~raHa1kBTaaralnra!, ~3!

whereM is the set of the maximal clusters and all their
subclusters,ra the reduced trial density matrix for the cluster
a, Ha the Hamiltonian contribution associated to the cluster
a ~in the present caseHa50 if a is not a nearest-neighbor
pair!, and theaa’s are constant, geometry-dependent coeffi-
cients that can be easily obtained by solving a suitable set of
linear equations@18,19#. The approximate functionalF has
to be minimized with respect to the cluster density matrices
~which, for a classical model, are diagonal!, with the con-
straints~normalization and compatibility, respectively!

Trra51, aPM and Tra\bra5rb , b,aPM . ~4!

In this work we shall use two different approximations in
the CVM scheme, the cube and the star-cube ones. The cube
approximation@17# is obtained by selecting as maximal clus-
ters the cubic cells of the lattice, and the corresponding func-
tional ~free energy per site! is

f @r8#53Tr~r2H2!1kBTFTr~r8lnr8!23Tr~r4lnr4!

13Tr~r2lnr2!2
1

2
Tr~r1Alnr1A!2

1

2
Tr~r1Blnr1B!G ,

~5!

wherer8, r4, r2 , andr1a denote the density matrices for the
cube, square, nearest-neighbor pair, and site~with a sublat-
tice indexa5A,B) clusters, respectively.f can be regarded
as a functional ofr8 only, since the compatibility constraints
can be easily solved bydefiningthe other density matrices as
partial traces ofr8. In principle,r8 has 3

856561 different
diagonal elements, but symmetry considerations reduce this
number to 495, which~apart from the normalization con-
straint, which can be easily dealt with! is the final number of
independent variables for this approximation. Despite this
large number of variables, the local minima corresponding to
the various phases are easily obtained by means of the so-
called natural iteration method~NIM ! @20#.

The star-cube approximation@21# goes a step further, in-
cluding in the set of maximal clusters also the ‘‘stars’’
formed by a site and its six nearest neighbors. This choice
seems particularly useful here, since in view of the above
remarks on the very low temperature properties of the BSS
phase it should be particularly important to consider explic-
itly the local environment of a site. The resulting approxi-
mate functional has the form

f @r8 ,r7A ,r7B#53Tr~r2H2!1kBTFTr~r8lnr8!

1
1

2
Tr~r7Alnr7A!1

1

2
Tr~r7Blnr7B!

23Tr~r4lnr4!24Tr~r48Alnr48A!

24Tr~r48Blnr48B!16Tr~r3Alnr3A!

16Tr~r3Blnr3B!23Tr~r2lnr2!G ,
wherer7a , r48a and r3a are the reduced density matrices
~all with a sublattice indexa referring to the central site! for
the star cluster and its four- and three-site subclusters ob-
tained by taking the central site and three or two of its near-
est neighbors forming a solid angle or a plane angle, respec-
tively. The functional now depends onr8, r7A and r7B
~subcluster matrices being defined as partial traces, as
above!, but the diagonal elements of these matrices are not
all independent because of the compatibility constraints.
Taking into account the lattice symmetries one finds 495
variables for the cube matrix, 168 variables for each star
matrix, and two sets of 30 linear constraints.

It is important to notice here that the calculation which
suggested the stability of the PSS phase@11,12# was based
on a modification of the cluster variation method which, al-
though considering many-point clusters~up to the cube clus-
ter, like our cube approximation!, does not take into account

R5886 54ALESSANDRO PELIZZOLA



properly then-point correlations withn.2. In the modified
CVM, in fact, the density matrices are written as
ra5exp„2Ha~eff!…, whereHa

(eff) is an effective Hamiltonian
which contains only one-site and two-site terms. This results
in a reduced number of variational parameters and in viola-
tion of the compatibility constraints in Eq.~4! ~for a full
description of the method, see Ref.@22#; the authors of Refs.
@11,12# do not report details of the method used, leaving
them to Ref.@23#, which in turn refers to@22#!. The results
for the ordered phases are then qualitatively similar to those
obtained using the much simpler two-point~Bethe! approxi-
mation. The present work can then be regarded as an im-
provement of that described in@11# for two reasons: first, the
CVM is used in its full form, i.e., without the restriction
inherent to the modified version used in@11#; second, with
the star-cube approximation we go one step further in the
cumulant expansion of the variational principle.

Let us now turn to a brief description of our results. As far
as very low temperatures are concerned, results from the
cube approximation are in perfect agreement with the modi-
fied CVM at the cube level@11,12#. In particular we have
p1A50.939 067,p2A5p3A50.030 467 andp1B50.000 117,
p2B5p3B50.499 942, while the entropy per site is
s50.366 928. The star-cube approximation introduces only
very small corrections, givingp1A50.939 041,p2A5p3A
50.030 480 and p1B50.000 055, p2B5p3B50.499 972,
with an entropy per site ofs50.366 941.

Also the critical temperature does not change much
with respect to the modified CVM. In the cube approxima-
tion we obtainTc51.268, which is just 0.5% higher than the
modified CVM results, a difference of the same sign and
order of magnitude of the one found in the simple Ising case
@22#. In the star-cube approximation the critical temperature
is slightly lower, Tc.1.263. These results are to be com-
pared with the most recent Monte Carlo estimateTc51.23
@13#.

These estimates can be further improved by employing
the recently introduced cluster-variation–Pade´-approximants
method~CVPAM! @24,25#, from which one can try to extract
also estimates for the critical exponents. Using the star-cube
results for the susceptibility for values ofw5tanh(1/T) up to
wmax50.48 we have obtained~with simple Dlog Pade´ ap-
proximants! a critical temperatureTc.1.24 and a critical
exponentg ranging from 1.30 to 1.33, in agreement with the
best recent estimates yieldingg.1.31 @13#. These CVPAM
results are still affected by relatively large systematic errors,
and an accurate CVPAM analysis would require both using
larger maximal clusters and including corrections to scaling
@25#. This is beyond the scope of the present paper, but our
calculation ofg can at least be regarded as a check of the
accuracy of the CVM results.

The central result of our paper, qualitatively different
from the modified CVM, is, however, that the free
energy of the BSS phase is always lower~although slightly!
than that of the PSS phase. In Fig. 1 we have plotted the free
energy differenced f vs temperature as given by the two
approximations. It is important to notice that the numerical
errors involved in the estimation of the free energy are sev-
eral order of magnitudes smaller thand f . From Fig. 1 one
can see thatd f is very small in the cube approximation, and

becomes even smaller in the more accurate star-cube ap-
proximation. In both approximationsd f vanishes only
at the critical point, but in the star-cube approximation it
becomes negligibly small at a temperature slightly below
1.0, like in the Monte Carlo simulations by Kolesik and
Suzuki @15#. Furthermore, the numerical values ofd f are of
the same order of magnitude as those reported by these au-
thors.

Although it is difficult to judge on the basis of our results
which is the exact ordered phase, some conclusions can cer-
tainly be drawn. First of all, the results found by Rosengren
and Lapinskas with the modified CVM@11# are ruled out and
attributed to the neglect of high-order correlations~remem-
ber that a simple Bethe approximation yields the same quali-
tative results!. This means also that the phase diagram they
proposed for the Blume-Emery-Griffiths model@12# is incor-
rect and must be reconsidered. On the other hand, the present
CVM predictions are compatible with the Monte Carlo re-
sults by Kolesik and Suzuki@15#. The Monte Carlo simula-
tions tends to favor the possibility that the free energy dif-
ferenced f vanishes below the critical point, giving rise to a
new intermediate phase. The CVM results seems to support
this possibility, the free energy differenced f being strongly
depressed, while going from the cube to the star-cube ap-
proximation, in the same temperature region. In order to
make this explicit, we have plotted in Fig. 2 the ratio be-
tween the two values ofd f reported in Fig. 1. It can be seen

FIG. 2. Ratio of the free energy differences given by the cube
and the star-cube approximations

FIG. 1. Free energy difference between the PSS and the BSS
phases, as given by the cube~dashed line! and the star-cube ap-
proximation~solid line!
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that this ratio increases very quickly for temperatures be-
tween 0.9 and 1.0, and this could be a signal that upon going
to larger and larger maximal clusters the free energy differ-
ence tends to zero. Both the Monte Carlo simulations and the

cluster variation method, however, leave open also the pos-
sibility that the free energy difference vanishes only at the
critical point, and further investigations are therefore wel-
come.
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